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We define a new consistent estimator of the integrated volatility of volatility based only on a pre-
estimation of the Fourier coefficients of the volatility process. We investigate the finite sample
properties of the estimator in the presence of noise contaminations by computing the bias of the
estimator due to noise and showing that it vanishes as the number of observations increases, under
suitable assumptions. In both simulated and empirical studies, the performance of the Fourier estimator
with high-frequency data is investigated and it is shown that the proposed estimator of volatility of
volatility is easily implementable, computationally stable and even robust to market microstructure
noise.

Keywords: Stochastic volatility; Volatility of volatility; High-frequency data; Microstructure; Fourier
analysis

JEL Classifications: C13, C14, C58, C22

1. Introduction

Motivated by empirical studies showing the patterns of volatili-
ties in financial time series, in the last decades many stochastic
volatility models have been proposed: such models are able
to reproduce stylized facts such as variance heteroscedasticity,
predictability, volatility smile and negative correlation between
asset returns and volatility. Very recently Barndorff-Nielsen
and Veraart (2013) proposed a new class of stochastic volatility
of volatility models, introducing an extra source of random-
ness. The estimation of all these models is rather complicated,
and the main difficulties are due to the fact that some factors
are unobservable (e.g. the volatility in a standard stochastic
volatility model or, even worse, the stochastic volatility of
volatility in stochastic volatility of volatility models), thus we
have to handle them as latent variables.

In this paper, we focus on the estimation of integrated
stochastic volatility of volatility using high-frequency data
and we define a consistent non-parametric estimator based
on the Fourier series methodology introduced in Malliavin
and Mancino (2002a), Malliavin and Mancino (2009), which
works both in the case of classical stochastic volatility models
and in the context of stochastic volatility of volatility models.
The proposed estimator needs only to pre-estimate the Fourier
coefficients of the volatility process from the observations of

∗Corresponding author. Email: simona.sanfelici@unipr.it

a price process and does not require a preliminary estimation
of the instantaneous volatility.

An early application of the Fourier methodology to identify
the parameters (volatility of volatility and leverage, i.e. the
covariance between the stochastic variance process and the
asset price process) of stochastic volatility models, including
classical models such as Heston (1993), Hull and White (1987),
Stein and Stein (1991), has been developed in Barucci and
Mancino (2010). However, the problem of robustness with re-
spect to microstructure noise is not addressed by these authors;
hence, the numerical simulations assessing the performance of
the method employ low-frequency observations.

The issue of estimating the volatility of volatility in the pres-
ence of jumps is studied in Cuchiero and Teichmann (2015):
firstly, the authors combine jump robust estimators of inte-
grated realized variance and the Fourier-Fejer inversion for-
mula to get an estimator of the instantaneous volatility path;
secondly, they use again jump robust estimators for integrated
volatility in which they plug the estimated path of the volatility
process in order to obtain an estimator of the volatility of
volatility. Barndorff-Nielsen and Veraart (2013) define a class
of stochastic volatility of volatility models and show that it
can be estimated non-parametrically by means of the quadratic
variation of the preliminarily estimated squared volatility pro-
cess, which they name pre-estimated spot variance-based re-
alized variance. Vetter (2012) proposes an estimator for the
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1332 S. Sanfelici et al.

integrated volatility of volatility, which is also based on incre-
ments of the pre-estimated spot volatility process and attains
the optimal convergence rate. The common feature of these es-
timators is that they first estimate the volatility path using some
consistent estimate of the instantaneous volatility; secondly,
they estimate the volatility of volatility using the estimated
volatility process as a proxy of the unknown paths. However,
these estimators do not take into account the microstructure
noise effects, which would seriously affect the accuracy of the
estimation as the spot volatility estimators are quite sensitive
to noise.

In the present work, we define the Fourier estimator of
volatility of volatility, we prove its consistency and we claim
efficiency for our method when applied to compute the volatil-
ity of the volatility in the presence of microstructure noise.
To this end, we compute the bias due to noise of the pro-
posed estimator of volatility of volatility and we show that
it converges to zero as the number of observations increases,
by suitably deleting the highest frequencies in the Fourier
expansions. This result is due to the intrinsic robustness of
the Fourier estimator of volatility; in fact, the finite sample
properties of the Fourier estimator of integrated volatility in
the presence of market microstructure noise have been studied
in Mancino and Sanfelici (2008), where the authors find that,
even without any bias correction of the estimator, the bias of a
finite sample can be made negligible by suitably deleting the
highest frequencies in the Fourier expansion. Our procedure
can be extended without any conceptual difficulties to the
multidimensional setting.

We stress the point that the Fourier estimator of the volatil-
ity of volatility is notably different from the other proposed
volatility of volatility estimators: in fact, the others all use some
estimated instantaneous volatility path in order to define the
volatility of volatility estimators by means of some numerical
differentiation (more or less in spirit they are quadratic or
power variations of the estimated spot volatilities). To the
contrary, our approach relies only on integrated quantities, i.e.
the Fourier coefficients of the volatility. As was early observed
in Malliavin and Mancino (2002a), this is a peculiarity of the
Fourier estimator that renders the proposed method easily im-
plementable, computationally stable and even robust to market
microstructure noise.

The finite sample performance of the Fourier estimator of
volatility of volatility is tested in extensive numerical simula-
tions, using both classical stochastic volatility models, where
the spot variance follows a mean-reverting square-root pro-
cess, and models with stochastic volatility of volatility, namely
where the volatility of the variance process is driven by a
second source of randomness. Our analysis is threefold. We
first show the sensitivity of the Fourier estimator to the choice
of cut frequencies, to which the consistency of the estimator is
related, and we test the robustness of the estimator with respect
to several noise settings. Then, we test the performance of the
Fourier estimator using as a benchmark the pre-estimated spot
variance-based realized variance of Barndorff-Nielsen and Ve-
raart (2013) and the bias corrected realized variance estimator
of Vetter (2012). Finally, we address the issue of parameter
identification of stochastic volatility models and we consider
an empirical application to S&P 500 index futures.

The paper is organized as follows. Section 2 reviews the
Fourier methodology for estimating volatilities. In section 3,
we define the Fourier estimator of volatility of volatility and
prove its consistency. The asymptotically unbiasedness of the
estimator with respect to (some kind of) microstructure noise
is proved in section 4. In section 5, we test its performance in
several scenarios. Section 6 concludes. The technical proofs
are contained in the appendix 1.

2. The Fourier method for computing volatilities

We consider a fairly general class of stochastic volatility dW
models. Suppose that the log price-variance processes satisfy

(A.I)
{

d p(t) = σ(t)dW (t) + a(t)dt
dv(t) = γ (t)dZ(t) + b(t)dt

where p(t) is the logarithm of the asset price and v(t) := σ 2(t)
is the variance process. Let W and Z be correlated Brownian
motions on a filtered probability space (�, (F t )t∈[0,T ], P),
satisfying the usual conditions.Assume that σ(t), γ (t) are non-
negative adapted processes and a(t), b(t) are adapted processes
such that

(A.II)

E
[∫ T

0 a2(t)dt
]

< ∞, E
[∫ T

0 b2(t)dt
]

< ∞

E
[∫ T

0 σ 4(t)dt
]

< ∞, E
[∫ T

0 γ 4(t)dt
]

< ∞.

Therefore, our stochastic volatility models assume the vari-
ance process to be a continuous Brownian semimartingale,
but the volatility of the variance process might have jumps.
Further, we will show in section 5 that the proposed estimator
of volatility of volatility works well also in the stochastic
volatility of volatility models by Barndorff-Nielsen and Veraart
(2013). In the sequel, we will often refer to the process v(t) as
the volatility, as is usually done in the econometric literature.

We briefly recall the Fourier volatility estimation method by
Malliavin and Mancino (2009). By rescaling the unit of time,
we can always reduce ourselves to the case where the time
window [0, T ] becomes [0, 2π ]. Then, define the kth Fourier
coefficient of the price process

ck(d p) := 1

2π

∫ 2π

0
exp(−ikt) d p(t),

and consider for all integers k, the Bohr convolution product

lim
N→∞

2π

2N + 1

∑
|s|≤N

cs(d p)ck−s(d p). (1)

In Malliavin and Mancino (2009), it is proved that the limit (1)
exists in probability and it is equal to the kth Fourier coefficient
of the volatility process v, which we denote by ck(v).

The knowledge of the Fourier coefficients ck(v) of the un-
observable instantaneous volatility process v(t) allows us to
handle this process as an observable variable and we can it-
erate the procedure in order to compute the volatility of the
volatility process: given the price-variance model in (A.I), the
kth Fourier coefficient of the volatility γ 2(t) of the volatility
process can be computed as the following limit in probability

ck(γ
2) = lim

M→∞
2π

2M + 1

∑
|s|≤M

cs(dv)ck−s(dv), (2)
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High-frequency volatility of volatility estimation 1333

where we can use the integration by parts formula to write the
Fourier coefficients of dv, that is, for any integer k, k �= 0,

ck(dv) = ikck(v) + 1

2π
(v(2π) − v(0)).

We start from this key property of Fourier estimation
method, namely the possibility of iterating the Bohr convolu-
tion procedure, and we propose an estimator of the integrated
volatility of volatility, indeed the zero Fourier coefficient of
the process γ 2(t), which is easily implementable with high-
frequency market data.

The idea of using the estimated Fourier coefficients of the
volatility as building blocks to obtain results for other related
quantities has been applied in Malliavin and Mancino (2002b)
to compute the price-volatility feedback-rate, in Mancino and
Sanfelici (2012) to estimate the quarticity and in Curato and
Sanfelici (2015) for the estimation of the leverage, i.e. the
covariance between the stochastic variance process and the
asset price process.

In this paper, we claim the effectiveness of Fourier esti-
mation method when applied to compute the volatility of the
volatility in the presence of microstructure noise, a result that
is due to the intrinsic robustness of the Fourier estimator of
volatility. In fact, Mancino and Sanfelici (2008) analyse the
finite sample properties of the Fourier estimator of integrated
volatility in the presence of market microstructure noise and
find out that, even without any bias correction of the estimator,
the bias on a finite sample can be made negligible by suitably
deleting the highest frequencies in the Fourier expansion. In
this paper, we analytically compute the bias of the Fourier
estimator of the volatility of volatility due to the presence of
noise and we show that this bias is asymptotically vanishing,
under a suitable choice of the number of Fourier frequencies.

3. The Fourier estimator of volatility of volatility

In this section, we define the Fourier estimator of the volatility
of volatility which relies on the convolution formulae (1) and
(2); then we prove that it is consistent in probability.

For any positive integer n, let Sn := {0 = t0 ≤ · · · ≤ tn =
2π} be the set of (possibly unequally-spaced) trading dates of
the asset, i.e. the observation times of the asset price. Denote
ρ(n) := max0≤i≤n−1 |ti+1 − ti | and suppose that ρ(n) → 0 as
n → ∞. Moreover, let δi (p) := p(ti+1) − p(ti ).

For any integer k, |k| ≤ 2N , let

ck(d pn) := 1

2π

n−1∑
i=0

exp(−ikti )δi (p), (3)

then for any integer j , | j | ≤ N , let

c j (vn,N ) := 2π

2N + 1

∑
|k|≤N

ck(d pn)c j−k(d pn). (4)

The following result states the consistency of the estimator (4)
of the Fourier coefficients of the volatility process. The proof
can be found in Malliavin and Mancino (2009).

Theorem 3.1 Under the assumptions (A.I) and (A.II) and the
condition ρ(n)N → 0, then, for any integer j , the following
convergence in probability holds

lim
n,N→∞ c j (vn,N ) = c j (v).

Given the estimated Fourier coefficients of the volatility
process (4), we construct an estimator of the second-order
quantity (i.e. the volatility of volatility) starting from (2). More
precisely, we define the Fourier estimator of the (integrated)
volatility of volatility

∫ 2π

0 γ 2(t)dt as

γ̂ 2
n,N ,M := (2π)2

M + 1

∑
| j |≤M

(
1 − | j |

M

)
j2 c j (vn,N )c− j (vn,N ).

(5)
In (5), we have chosen to add a Barlett kernel, which im-

proves the behaviour of the estimator for very high observation
frequencies.

We emphasize the fact that the estimator (5) does not require
the preliminary estimation of the instantaneous volatility, but
only the estimated Fourier coefficients of the volatility.

As far as we know, all the recently proposed estimators of
volatility of volatility need the estimated volatility path in order
to estimate the volatility of volatility, the ratio being that the
reconstructed (estimated) path of the volatility is plugged into
an estimator of integrated volatility, e.g. the realized volatility
(see, for instance, Vetter 2012, Barndorff-Nielsen and Veraart
2013, Cuchiero and Teichmann 2015). Therefore, a large num-
ber of observations for the price process is necessary, as it is
statistically clear that the integrated variance of the volatility
process can be estimated only on a larger time scale than the
one used for estimating the volatility path from the observed
prices. This yields a huge loss of information contained in
the original data-set. On the other side, it is well known that
spot volatility estimation is quite unstable, especially in the
presence of microstructure effects as it happens with high-
frequency data. On the contrary, the Fourier estimator can
reconstruct the integrated volatility of volatility using as input
the Fourier coefficients of the observable log-returns, in other
words using only integrated quantities from the whole data-set.

In order to prove the consistency of the proposed estimator,
we add a further assumption on the values of the volatility at
the end points (see Barndorff-Nielsen et al. 2008 for a similar
idea):

(A.III) we redefine the two end values v(0) and v(2π)

to be, respectively, equal to v(0+)+v(0−)
2 and v(2π+)+v(2π−)

2 .
Equivalently, we can use an average of m distinct observations
in the intervals (−ε, ε) and (2π − ε, 2π + ε). This jittering is
used to eliminate end-effects that would otherwise appear.

The following result proves that (5) is a consistent estimator
of the integrated volatility of volatility and gives the growth
rates between the highest Fourier frequencies N and M , which
are needed for the construction of the estimators c j (vn,N ) and
γ̂ 2

n,N ,M , respectively, and the initial mesh width ρ(n) of the
price process observations.

Theorem 3.2 Under the assumptions (A.I)–(A.III) and the
conditions Nρ(n) → 0 and M4

N → 0, then the following
convergence in probability holds

lim
n,N ,M→∞ γ̂ 2

n,N ,M =
∫ 2π

0
γ 2(t)dt.

Remark 3.3 The multivariate extension of our results to obtain
a high-frequency estimator of the covariance of the covariance
matrix is essentially contained in the proposed theory. In fact,
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1334 S. Sanfelici et al.

the Fourier method was originally introduced by Malliavin and
Mancino (2002a) for the estimation of multivariate volatility
in order to overcome the difficulties intrinsic in the use of the
quadratic covariation formula on true return data, due to the
non-synchronicity of observed prices on different assets. We
do not intend to develop this theory in the present paper, but
we claim that the availability of a multivariate extension is an
added important advantage of our estimator of second-order
quantities.

4. Robustness to microstructure noise

In this section, we derive the analytical expression of the bias
of the Fourier estimator of volatility of volatility due to the
presence of microstructure noise, for a given sample size n and
a given number of Fourier coefficients N and M included in the
estimation, and we prove that the bias of the Fourier estimator
converges to zero, for n, N , M increasing at suitable rates.
Therefore, even if we do not proceed to any bias correction of
the estimator, a suitable cutting of the highest frequencies can
make the finite sample bias negligible.

We suppose that the logarithm of the observed price process
is given by

p̃(t) = p(t) + η(t) (6)

where p(t) is the efficient log price in equilibrium and η(t) is
the microstructure noise.

The following assumptions hold:
(M.I) the random shocks {η(ti )}0≤i≤n , for all n, are indepen-

dent and identically distributed with mean zero and bounded
fourth moment;

(M.II) the shocks {η(ti )}0≤i≤n are independent of the price
process p, for all n.

Remark 4.1 We consider here the simple case where the mi-
crostructure noise displays an MA(1) structure with a negative
first-order autocorrelation. The MA(1) model is typically justi-
fied by bid-ask bounce effects (see Roll 1984). The hypothesis
that the random noises are independent of the returns (see
the discussion in Hansen and Lunde (2006)) is assumed here
with the aim to obtain simple analytic expressions for the bias.
Nevertheless, we expect that similar results would be observed
under more general microstructure noise dependence, as a con-
sequence of the robustness of the Fourier volatility estimator
proved in Mancino and Sanfelici (2008) under general depen-
dent noise structure. A specific simulation study confirming
this intuition is developed in section 5.

To simplify the notation, in the sequel we will write ηi

instead of η(ti ). Denote δi ( p̃) := p̃(ti+1) − p̃(ti ), where p̃ is
defined in (6). Then δi ( p̃) = δi (p)+εi , where εi := ηi+1 −ηi .

We focus on the estimator of integrated volatility of volatility
in the presence of microstructure noise defined by

γ̃ 2
n,M,N = (2π)2

M + 1

∑
| j |≤M

(
1 − | j |

M

)
j2 c j (̃vn,N )c− j (̃vn,N )

(7)
where

c j (̃vn,N ) = 2π

2N + 1

∑
|k|≤N

ck(d p̃n)c j−k(d p̃n),

is the estimated j th Fourier coefficient of the volatility, given
price observations contaminated by microstructure noise.

The following result contains the computation of the bias
induced by the noise. For simplicity, we assume equally spaced
data in the following theorem.

Theorem 4.2 Under the assumptions (A.I), (A.II) and (M.I),
(M.II), let γ̂ 2

n,M,N and γ̃ 2
n,M,N be defined respectively by (5)

and (7). Then, it holds

E
[
γ̃ 2

n,M,N − γ̂ 2
n,M,N

]
= 2E

[
η2

]
E

[∫ 2π

0
σ 2(t)dt

]

(n, N , M)

+ 2
(

E
[
η4

]
+ 3E

[
η2

])
�(n, N , M)

+ 2E
[
η2

]
�(n, N , M),

where 
(n, N , M), �(n, N , M) and �(n, N , M) are deter-
ministic functions that go to 0 as n, N , M → ∞, under the
conditions M2 N 2

n → 0 and M2

N → 0.

Remark 4.3 From Theorems 3.2 and 4.2, the growth condi-
tions ensuring both the consistency of the Fourier estimator of
volatility of volatility (7) and its asymptotically unbiasedness
in the presence of microstructure noise are that N = O(nα)

and M = O(nβ) with 0 < α < 1
2 and 0 < β < α

4 .

5. Numerical results

In this section, we simulate discrete data from a continuous
time stochastic volatility model with and without microstruc-
ture contaminations. From the simulated data, Fourier esti-
mates of the integrated volatility of volatility can be compared
to the value of the true quantity and to estimates obtained
with other methods proposed in the literature. However, to
the best of our knowledge, only very recently the literature
has been focused specifically on the analysis of estimators
for integrated volatility of volatility. We refer to the works of
Barndorff-Nielsen and Veraart (2013), Vetter (2012), Cuchiero
and Teichmann (2015). None of these contributions, however,
consider the issue of microstructure effects which may be
problematic in empirical applications and therefore they do
not apply to a real high-frequency setting.

Another aspect that is worth mentioning is that, by their
nature, all existing estimators of volatility of volatility rely on
a preliminary estimation of the spot volatility path. It is well
known that spot volatility estimation is particularly difficult
and quite unstable, especially in the presence of microstructure
effects. On the contrary, the Fourier estimator can reconstruct
the Fourier coefficients of the volatility of the variance process
starting from the observable log-prices. Therefore, our estimate
is obtained by iterated convolutions of the Fourier coefficients
of the log-returns, without resorting explicitly to any proxy
of the latent spot variance of returns. We think that this can
represent a strength of our approach, as it will be highlighted
by the following numerical simulations.

As a benchmark for our estimator, we use the pre-estimated
spot variance based realized variance of Barndorff-Nielsen and
Veraart (2013), that we call realized variance in the following.
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High-frequency volatility of volatility estimation 1335

This estimator is consistent in the absence of microstructure
frictions. To obtain roughly unbiased and valid estimates of the
integrated volatility of volatility when microstructure effects
play a role, we can resort to low-frequency sampling. However,
the well-known bias-variance trade off comes up as sparse
sampling eliminates information contained in the available
data. For the reader’s convenience, we recall the construction
of the realized variance estimator.

Hypothetically, let us assume that we observe the volatility
process σ 2 at equally spaced times i�n , i = 0, 1, 2, . . . ,

�T/�n	, for some �n > 0 such that �n → 0, as n → ∞. The
realized variance at time t is then defined as the sum of squared
increments over the time interval [0, t], for 0 ≤ t ≤ T , i.e.

RV n
t (σ 2) =

�t/�n	∑
i=1

(
�n

i σ 2
)2

,

where �n
i σ 2 = σ 2(i�n)−σ 2((i −1)�n). Standard arguments

assure that RV n
t (σ 2) converges in probability, uniformly on

compacts, to the integrated volatility. However, since volatility
is unobservable, we have to replace the squared volatility pro-
cess by a consistent spot variance estimator. Barndorff-Nielsen
and Veraart (2013) propose to use the locally averaged realized
variance

σ̂ 2
s = 1

Knδn

�s/δn	+Kn/2∑
i=�s/δn	−Kn/2

δn
i (p)2,

where now δn
i (p) = p(iδn) − p((i − 1)δn) is the i th log-

return computed on a different time scale at which we observe
the logarithmic asset price p, with mesh size δn > 0. This
estimator is constructed over a local window of size Knδn ,
where we require Kn → ∞ such that Knδn → 0. However,
this only works when we estimate spot volatility on a finer time
scale than the one used for computing the realized variance.
Then we must assume δn < �n . In particular, we can take

�n = O
(
δC

n

)
, for 0 < C < 1,

and
Kn = O

(
δB

n

)
, for − 1 < B < 0.

In the presence of microstructure effects in the price process,
besides sparse sampling, we can choose locally pre-averaged
variance estimator to reduce the noise-induced bias as in Jacod
et al. (2009). However, we limit our analysis to the realized
variance estimator.

Vetter (2012) proposes a similar spot variance-based estima-
tor and shows that it is possible to take �n = Knδn preserving
convergence at the optimal rate, provided that a bias correction
is introduced. We will consider this estimator for integrated
volatility of volatility as well in our analysis and we will call
it Corrected realized variance.

In both cases, the necessary condition imposed on the choice
of the time scales δn and �n represents a limit for the efficiency
of such procedures. On the one side, it requires using huge data-
sets of high-frequency returns, where market microstructure
effects likely become manifest. On the other side, the choice of
the second-level time scale �n implies a loss of the information
contained in the original time series.

Our simulation exercise is conducted using mainly two dif-
ferent stochastic volatility models. The first one is a classical
stochastic volatility model, where the spot variance follows a

mean-reverting square-root process. The second one is a model
with stochastic volatility of volatility, namely the volatility of
the variance process is driven by a second source of random-
ness. Our analysis is threefold. In section 5.1, we show the
sensitivity of the Fourier estimator to the choice of the param-
eters M and N , to which the consistency of the estimator is
related and we test the robustness of the estimator with respect
to several noise settings. In section 5.2, we test the performance
of the Fourier estimator with respect to the realized variance
and the bias corrected realized variance estimators both on
a standard stochastic volatility model and on a model with
stochastic volatility of volatility. Finally, in sections 5.3 and
5.4, we address the issue of parameter identification of stochas-
tic volatility models and we consider an empirical application
to S&P 500 index futures.

5.1. Parameter sensitivity and robustness to microstructure
effects

The definition of the Fourier estimator of volatility of volatil-
ity depends on the choice of two parameters characterizing
the highest frequency Fourier coefficients of returns and of
volatility, respectively, that enter in our estimator. We call these
parameters the cutting frequencies at which the sums in (4)
and (5) are truncated. Therefore, it is important to analyse the
sensitivity of the estimator to the choice of the parameters M
and N .

Let us consider a stochastic volatility model where the spot
variance follows a mean-reverting square-root process. We
simulate second-by-second return and variance paths over a
daily trading period of T = 6 h, for a total of 250 trading
days and n = 21 600 observations per day. The infinitesimal
variation of the true log-price process and spot volatility is
given by the CIR square-root model (see Cox et al. 1985),{

d p(t) = σ(t) dW (t)
dσ 2(t) = α(β − σ 2(t))dt + νσ(t) dZ(t),

(8)

where W , Z are two possibly correlated Brownian motions,
with constant instantaneous correlation ρ. The parameter val-
ues used in the simulations are taken from the unpublished
appendix to Bandi and Russell (2005) and reflect the features
of IBM time series: α = 0.01, β = 1.0 and ν = 0.05. We
take ρ = −0.5. The initial value of σ 2 is set equal to one,
while p(0) = log 100. Moreover, when microstructure effects
are considered, we assume that the logarithmic noises η are
Gaussian i.i.d. and independent from p; this is typical of bid-
ask bounce effects in the case of exchange rates and, to a
lesser extent, in the case of equities. We consider noise-to-
signal ratios ζ = std(η)/std(r) equal to 0 in the no-noise case
and to 2.5 for noisy data, where r are the 1-s returns.

In figure 1, we plot the real MSE of the Fourier estimator
averaged over 250 days as a function of M and N , respectively,
and of any combination (M, N ) in the absence of microstruc-
ture effects. We notice that the Fourier estimator turns out to
be on average quite robust to the choice of M in the interval
[0, 12]. For larger values of M , both the MSE and bias rapidly
increase. As regards to N , except for the lowest values up to
about N = 250 and depending on M , the MSE exhibits small
variability as well.
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1336 S. Sanfelici et al.

Figure 1. Real MSE and bias of the Fourier estimator of volatility of volatility averaged over the whole data-set (250 days) as a function of
M and N , for the purely diffusive price process (8). True Integrated volatility of volatility 6.24e − 4.

Figure 2 shows the average MSE in the presence of i.i.d.
noise, with ζ = 2.5. The plots are qualitatively the same as
in figure 1. We notice that the addition of noise does not seem
to affect much the variability of the MSE as a function of N
and the quality of estimation. However, the estimator seems to
be more sensitive to the choice of M in the presence of noise
than in the pure diffusive case. This is reflected by the MSE
and bias, which show higher values for M ≥ 10.

Usually, the minimum MSE is achieved for values of the
cutting frequency N which turn out to be much smaller than
the Nyquist frequency (i.e. N � n/2) both in the absence and
in the presence of noise. Moreover, in complete agreement with
the theory developed in section 3, the optimal value of M is
very small. In these two simulations, we get that the optimal
values of the cutting frequencies are N = 995, M = 8 and
N = 1230, M = 7, respectively, and the minimum attained
MSE is 5.75e − 8 and 6.63e − 8, respectively. As the noise-
to-signal ratio increases, the choice of the parameter M has
a more critical impact on the MSE and smaller values of M
should be considered. We remark that the Fourier estimator
makes use of all the n observed prices, because it reconstructs
the signal in the frequency domain and therefore it can filter
out microstructure effects by a suitable choice of M and N
instead of reducing the sampling frequency.

Finally, we test the robustness of the Fourier estimator with
respect to more general microstructure settings. Therefore, we
relax both the assumptions (M.I) and (M.II) and analyse the
behaviour of the Fourier estimator as a function of the sampling
frequency. We consider again the model (8), with data featuring
the IBM time series. Besides the case of pure diffusion, we

consider three different microstructure models: the first one,
denoted by UNC is the basic i.i.d. Gaussian model satisfying
(M.I) and (M.II); in the second one, denoted by COR, we relax
assumption (M.I) and allow first-order autocorrelation of the
random shocks; in the third one, denoted by DEP, we relax
assumption (M.II) and allow the random shocks η(ti ) to be
linearly dependent on the return δi−1(p), i.e. ηi = αηδi−1(p)+
η̂i with η̂i Gaussian i.i.d. random variables.

Table 1 lists the MSE of the Fourier estimates of the volatility
of volatility as a function of the sampling frequency ranging
from 1 s to 4 min. The parameters N and M of the Fourier
estimator must be chosen conveniently. One possible criterion
is the minimization of the true MSE. This procedures is unfea-
sible when applied to empirical data, where the actual volatility
path is not observed. However, to evaluate the robustness of
the estimator to different noise settings, we select the optimal
parameters N and M by minimizing the true average MSE over
250 days.

We notice that in all the settings the optimal choice of the
cutting frequencies M and N keeps the MSE low. In particular,
the lowest MSE is always achieved at the highest frequency
(1 s). This is due to the robustness of the Fourier estimator to
microstructure effects which allows the method to use high-
frequency data without resorting to sparse sampling.

Figure 3 shows the optimal cutting frequencies M and N as
a function of the number of observations n and of the sampling
interval ρ(n). The presence of microstructure noise of any kind
yields optimal values of both N and M that are lower than for
the pure diffusive model. However, it has a larger effect on
the choice of M rather than N . By inspecting both the MSE
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High-frequency volatility of volatility estimation 1337

Figure 2. Real MSE and bias of the Fourier estimator of volatility of volatility averaged over the whole data-set (250 days) as a function of
M and N , in the presence of microstructure effects, with ζ = 2.5. True Integrated volatility of volatility 6.24e − 4.

Table 1. MSE of the Fourier volatility of volatility estimates under general noise settings.

Fourier estimator MSE ×1.0e − 6

Sampling freq. 1 s 15 s 30 s 1 m 2 m 3 m 4 m

NO NOISE 0.0547 0.0814 0.1010 0.1485 0.2001 0.1869 0.2680
UNC 0.0675 0.1060 0.1241 0.1609 0.2044 0.1792 0.2836
COR 0.0806 0.1224 0.1403 0.1675 0.1778 0.1931 0.2782
DEP 0.0679 0.1073 0.1237 0.1611 0.2043 0.1794 0.2851

Notes: Parameter values: α = 0.01, β = 1.0, ν = 0.05, ρ = −0.5, σ 2(0) = 1, p(0) = log 100. When microstructure effects are considered, we consider a
noise-to-signal ratio ζ = 2.5. Moreover, in the case of autocorrelated noise, we assume a first-order autocorrelation coefficient ρη = 0.5, while in the case of
dependent noise we assume αη = 0.1. True integrated volatility of volatility 6.240255e − 4.

in table 1 and the optimal choice of M and N in figure 3, we
notice that the most problematic setting is provided by the case
of correlated noise (COR), which entails smaller values of M
and N in order to filter the microstructure effects.

5.2. Fourier method efficiency

Let us now consider the classical Heston model (see Heston
1993), {

d p(t) = (μ − σ 2(t)/2)dt + σ(t) dW1(t)
dσ 2(t) = α(β − σ 2(t))dt + νσ(t) dW2(t),

(9)

where we assume the same data as in Vetter (2012), i.e. α = 5,
β = 0.2, ν = 0.5, μ = 0.3 and ρ = −0.2, which corresponds
to a moderate leverage effects. Furthermore, we set p(0) = 0
and σ 2

0 = β. The trading period is set to T = 1 day. We
generate n = 10 000 daily observations, corresponding to a
trading frequency of 8.64 s.

The sampling frequency δn and the other parameters M , N
and Kn contained in the definition of the estimators considered
in our analysis must be chosen conveniently, especially in the
presence of noise. One possible criterion is the minimization of
the true MSE. Another possible choice is the minimization of
the expected asymptotic error variance. Both these procedures
are unfeasible when applied to empirical data, where the actual
volatility path is not observed. However, to evaluate the highest
efficiency level that can be achieved by the analysed estimators,
we select optimal parameters by minimizing the average MSE
over 250 days. Table 2 displays the results of our analysis.

First, let us consider the case with no microstructure effects,
i.e. ζ = 0.0. The Fourier estimator is optimized with respect to
M and N by minimizing the true MSE over a grid of discrete
values of these parameters. Similarly, the optimal MSE-based
realized variance estimator is obtained by choosing δn = 1/n,
�n = δn Kn/2 and letting Kn vary in a suitable range of
integer values around 2

√
n. More precisely, the spot volatility

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

 U
L

M
 -

 K
iz

] 
at

 0
6:

37
 0

2 
M

ay
 2

01
6 



1338 S. Sanfelici et al.

Figure 3. Optimal cutting frequencies M and N as a function of the number of observations n and of the sampling interval ρ(n). ‘data1’
corresponds to pure diffusion; ‘data2’ corresponds to UNC and DEP noise settings; ‘data3’ corresponds to COR noise setting.

Table 2. Optimization procedures based on the minimization of the true average MSE (250 days, n = 10 000 observations per day). True
integrated vol of Vol 4.091552e − 2.

Fourier–Fejer Realized variance C-Realized variance

Noise-to-signal ratio MSE BIAS MSE BIAS MSE BIAS

ζ = 0.0 1.39e − 4 −4.21e − 3 1.00e − 4 −3.58e − 3 9.68e − 4 −1.33e − 3
ζ = 0.5 1.37e − 4 −5.93e − 3 1.46e − 4 −3.77e − 3 4.60e − 3 −1.05e − 2
ζ = 1.5 1.26e − 4 −5.43e − 3 1.69e − 4 −2.17e − 3 5.55e − 3 −1.32e − 2
ζ = 2.5 5.88e − 5 −1.61e − 3 9.79e − 5 −3.08e − 3 7.82e − 3 −1.53e − 2
ζ = 3.5 7.32e − 5 −8.66e − 4 1.15e − 4 −2.14e − 3 1.26e − 2 −1.37e − 2

trajectory is estimated using tick-by-tick observations, while
the realized variance of volatility is estimated at the frequency
�n corresponding to Kn/2 ticks, where the parameter Kn is
chosen in order to minimize the daily MSE. The bias-corrected
realized variance is constructed by choosing Kn = √

n, as in
section 4 of Vetter (2012). The Fourier and the realized variance
estimators both provide low MSE and bias. The corrected
realized variance performance is slightly worse in terms of
MSE, although still acceptable, and provides the smallest bias.
The optimal cutting frequency for the Fourier estimator are
N = 322 e M = 48, while the optimal value for the window
size in the realized variance estimator is Kn = 240 which
entails �n = 120δn ∼= 17 m.

The case with microstructure effects is reported in table 2 as
well. We consider four different levels of noise-to-signal ratio
ζ = 0.5, 1.5, 2.5, 3.5 and ρ = −0.2. The Fourier estimator is
again optimized with respect to M and N by minimizing the
true MSE over a grid of discrete values of these parameters.
The realized variance estimator is not robust to microstructure
noise; therefore, we have to resort to sparse sampling to keep
the bias due to market microstructure low. The daily MSE is

optimized with respect to both Kn and the sampling frequency
δn at which the spot volatility path is estimated. However, we
remark that sparse sampling may produce a loss of the rich
information contained in the original high-frequency data-set.
On the contrary, the Fourier estimator uses all the available
data and seems to be invariant to the presence of increasing
levels of noise.

As the noise-to-signal ratio increases, the optimal sampling
frequency δn for the realized variance estimator δn passes from
276 to 492 s. The corresponding values for the second-level
sampling interval �n range from approximately 74 to 98 min.
This keeps the bias of the realized variance estimator quite
small, at the expenses of a slightly larger MSE. However, for
ζ = 2.5 and ζ = 3.5 its performance gets worse than with the
Fourier estimator.

The bias-corrected realized variance estimator shows a very
poor performance. Using all the available data at the highest
frequency would produce completely unreliable estimates, due
to microstructure effects; for instance, in the case ζ = 1.5,
we would get an average MSE equal to 2.63 with average
bias equal to 1.43. When the estimator is optimized in terms
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High-frequency volatility of volatility estimation 1339

of the MSE, then the log-prices are optimally sampled at the
frequency of 467 s and Kn is chosen accordingly as the square
root of the number of data in the sample; however, both bias
and MSE of the bias-corrected realized variance estimator are
still very large compared to the Fourier and realized variance
estimators.

Finally, we consider a model with stochastic volatility of
volatility, namely the volatility of the variance process is driven
by a second source of randomness. This model expresses the
possibility or fact that there is greater variability in the data
structure that cannot be described by classical stochastic volatil-
ity models. We consider the following data-generating process⎧⎨⎩

d p(t) = σ(t)dW1(t)
dv(t) = αv(βv − v(t))dt + γ (t) dW2(t),
dγ 2(t) = αγ (βγ − γ 2(t))dt + νγ γ (t) dW3(t),

(10)

where W1, W2 are Brownian motions with correlation ρ, i.e.
d〈W1, W2〉t = ρdt and W3 is a third independent Wiener
process. The process (γ 2

t )t≥0 is driven by a CIR process and
can be interpreted as the stochastic variability of variance. The
Feller condition guarantees that both processes v = σ 2 and γ 2

stay positive. The parameter values used in the simulations are:
αv = 1.0, βv = 1.0, αγ = 0.01, βγ = 0.01 and νγ = 0.0005.
We take ρ = −0.5. The initial value of σ 2 is set equal to one,
while p(0) = 0 and γ 2(0) = βγ . The trading period is set to
T = 1 day and we generate n = 10 000 daily observations,
corresponding to a trading frequency of 8.64 s. We assume
no microstructure effects and therefore no sparse sampling is
needed when estimating the spot volatility path at the first level
(i.e. δn = 1/n). Numerical results are shown in table 3.

We notice that the Fourier estimator provides good estimates
both in terms of bias and MSE. The optimal selected value
of N is larger than for the Heston model, while the optimal
value of M is smaller. The realized variance estimator seems
to provide rather good estimates as well, but less efficient than
the Fourier estimator. However, this is achieved by choosing
a huge value of the parameter Kn = 1686, namely the time
scale at which the second-level realized variance is computed
is around δn Kn/2 s, i.e. two hours. This has strong effects on
the efficiency of the estimator, as it can be seen from fig-
ure 4 showing the histograms of the relative error (γ̂ 2

n,N ,M −∫ 2π

0 γ 2(t)dt)/
∫ 2π

0 γ 2(t)dt . The mean and standard deviation
of the relative error for the realized variance is much larger
than for the Fourier estimator.

Finally, looking again at table 3, the non optimized bias-
corrected realized variance estimator with Kn = 100 shows a
very poor performance. The inefficiency of both the realized
variance estimators can be ascribed to the necessary condition
imposed on the choice of the time scales δn and �n . As already
observed, the choice of the second-level time scale �n implies
a loss of the information contained in the original time series.

5.3. Parameter identification of SV models

Let us consider now the issue of parameter identification of
stochastic volatility models. Suppose that the data-generating
process for the log-price dynamics is the Heston model{

d p(t) = μdt + σ(t) dW (t)
dσ 2(t) = α(β − σ 2(t))dt + νσ(t) dZ(t),

where W and Z are two possibly correlated Brownian motions.
Then, we can use our estimates to identify parameters of the
stochastic volatility model from a finite sample. Using simple
tools of Itô calculus, we can derive the following identity

ν2σ 2(t) = γ 2(t).

Therefore,

ν2
∫ T

0
σ 2(t)dt =

∫ T

0
γ 2(t)dt.

Using the Fourier analysis methodology, we get the follow-
ing estimate of the parameter ν

ν̂ =
(

γ̂ 2
n,N ,M

2πc0(vn,N )

) 1
2

,

where γ̂ 2
n,N ,M is defined by (5) and c0(vn,N ) by (4).

Therefore, by using the provided Fourier estimates of the
integrated volatility and of the volatility of volatility, we can
obtain estimations of the parameter ν identifying the diffusion
component. This parameter does not change under equivalent
measure changes and can be used to specify a model for pur-
poses of pricing, hedging and risk management.

The data used in our simulations are taken from Barucci and
Mancino (2010): α = 0.03, β = 0.25, ν = 0.1, μ = 0 and
ρ = −0.2. We simulate second-by-second return and variance
paths over a daily trading period of T = 6 h, for a total of 100
trading days and n = 21600 observations per day. Numerical
results are shown in table 4.

The table lists the estimated value of ν̂, obtained with the
Fourier and the realized variance estimator, together with the
relative error of the estimate, denoted by rel. error. Moreover,
the table shows the relative bias and relative RMSE of the
estimate γ̂ 2

n,N ,M , defined as

Rel. Bias = E

[
γ̂ 2

n,N ,M − ∫ 2π

0 γ 2(t)dt∫ 2π

0 γ 2(t)dt

]
,

Rel. RMSE =
⎛⎝E

⎡⎣(
γ̂ 2

n,N ,M − ∫ 2π

0 γ 2(t)dt∫ 2π

0 γ 2(t)dt

)2
⎤⎦⎞⎠1/2

.

We consider two different simulations: the first one with no
microstructure effects and the second one with a noise-to-
signal ratio ζ = 1.5. In both cases, the performance of the
Fourier estimator is better than the one of the realized variance
estimator. In particular, the relative bias achieved with the
Fourier estimator is one order of magnitude less than with
the realized variance and the relative error over the Fourier
estimated ν̂ is half the value obtained by the realized variance.
We notice that, as in the previous section, in the case of no
microstructure effects the optimal value of the parameter Kn

is equal to 1680, namely the time scale at which the realized
variance is computed is around Kn/2 s, i.e. 14 min, while the
Fourier estimator uses second-by-second returns.

5.4. An empirical application: the S&P 500 index futures

We consider now a case study based on tick-by-tick data of
the S&P 500 index futures recorded at the Chicago Mercantile
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1340 S. Sanfelici et al.

Table 3. Stochastic volatility of volatility model. Optimization procedures based on the minimization of the true average MSE (250 days,
n = 10 000 observations per day). True integrated vol of Vol 1.000018e − 2.

Fourier-Fejer Realized Variance C-Variance

No microstructure MSE BIAS MSE BIAS MSE BIAS

ζ = 0.0 1.51e − 5 −1.71e − 3 9.81e − 5 5.86e − 3 5.16e − 1 −1.55e − 1

Parameter values N = 1180 M = 8 Kn = 1686 Kn = 100

Figure 4. Stochastic volatility of volatility model. Histograms of the relative error
(
γ̂ 2

n,N ,M − ∫ 2π
0 γ 2(t)dt

)
/
∫ 2π

0 γ 2(t)dt .

Table 4. Stochastic volatility model calibration. True value ν = 0.1.

Fourier-Fejer Realized variance

ν̂ Rel. Error Rel. Bias Rel. RMSE ν̂ Rel. Error Rel. Bias Rel. RMSE

ζ = 0.0 0.0972 2.79e − 2 −4.35e − 2 2.16e − 1 0.1059 5.94e − 2 1.52e − 1 4.11e − 1
ζ = 1.5 0.0964 3.60e − 2 −6.10e − 2 2.07e − 1 0.0921 7.92e − 2 −1.35e − 1 2.81e − 1

Table 5. Summary statistics for the sample of the traded CME S&P 500 index futures in the period 2 January 1990 to 29 December 2006
(11 611 297 trades). ‘Std. Dev.’ denotes the sample standard deviation of the variable.

Variable Mean Std. Dev. Min Max

S&P 500 index futures 893.97 366.24 295.60 1574.00
N. of ticks per minute 7.0433 3.5276 1 56

Exchange (CME). The sample covers the period from 2 January
1990 to 29 December 2006, a period of 4274 trading days,
having 11 611 297 tick-by-tick observations. Table 5 describes
the main features of our data set.

High-frequency returns are contaminated by transaction
costs, bid-and-ask bounce effects, etc. leading to biases in
the variance measures. Therefore, data filtering is necessary.
Days with trading period shorter than 5 h have been removed.
Jumps have been identified and measured using the Threshold
Bipower Variation method (TBV) of Corsi et al. (2010), which
is based on the joint use of bipower variation and threshold
estimation of Mancini (2009).This method provides a powerful
test for jump detection, which is employed at the significance
level of 99.9%. We refer the reader to Mancino and Sanfelici
(2012) for further details on the jump removal procedure. The
number of days remaining after jump removal and filtering is

3078, for a total of 8 575 527 tick-by-tick data. The contribution
coming from overnight returns is neglected.

Sparse sampling needed for the realized variance estimator
can be performed either in calendar time, for instance with
prices sampled every 5 or 15 min, or in transaction time, where
prices are recorded every mth transaction. When we sample
in calendar time, the x-min returns are constructed using the
nearest neighbour to the x-minute tag. Figure 5 shows the av-
erage realized variance over the full sample period constructed
for different sampling frequencies in calendar (Panel A) and
transaction time (Panel B).

The volatility signature plots clearly indicate that the bias
induced by market microstructure effects is relatively small
for the highly liquid S&P 500 index futures, and dies out very
quickly. Note that with a transaction taking place on average
about every 8.57 s, the 1-min sampling interval corresponds to
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High-frequency volatility of volatility estimation 1341

Figure 5. Realized variance: volatility signature plot of the S&P 500 index futures constructed over the full sample period. The graph shows
average integrated volatility of volatility constructed for different frequencies measured in minutes (Panel A) and in number of ticks (Panel
B). Note that there are about 8.57 s on average between trades, so that the average annualized 5-min based realized volatility corresponds to
around the 35th tick.

Figure 6. Fourier estimator: volatility signature plot of the S&P 500 index futures constructed over the full sample period. The graph shows
average integrated volatility of volatility computed by means of the Fourier estimator, using tick-by-tick data, as a function of the parameter
N . M is set equal to 3.

around the 7th tick presented in the figure, with large variability
across the whole dataset. The impact of market microstructure
effects on the five-min realized volatility measure for the S&P
500 index futures over the period from 1990 to 2006 can
therefore be regarded as negligible. However, the estimates
obtained by calendar time sampling are quite unstable and
variable as the sampling frequency decreases. When sampling
in transaction time, the most stable estimates are obtained for
frequencies between 20 and 70 ticks that roughly correspond
to 3–10 min. In both cases, for low frequencies the realized
variance estimator becomes downwards biased because sparse
sampling has a severe impact on the cardinality of the database.
In particular, for any value of n we choose Kn = 2

√
n. This

implies that most of the data are neglected when estimating the

second-order quantities so that the volatility of volatility esti-
mates are poor, especially when we start from sparse sampled
data.

In figure 6, we plot the volatility signature plot as computed
by means of γ̃ 2

n,N ,M using tick-by-tick data, as a function of
the parameter N . The value of the parameter M is set to 3.
We can see that for N larger than 150 the estimates become
much stable. Taking into account the mathematical properties
of the Fourier estimator, when the trading period is T = 6.5 h,
a parameter value of say N = 200 corresponds to sampling
frequencies of T/(2N ) = 390/400 = 0.9750 min, in the sense
that the spectral decomposition in the frequency space allows to
detect phenomena happening at the frequency of about 1 min,
much higher than with the realized variance estimator.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
et

 U
L

M
 -

 K
iz

] 
at

 0
6:

37
 0

2 
M

ay
 2

01
6 



1342 S. Sanfelici et al.

6. Conclusions

We have introduced a new non-parametric estimator of the
stochastic volatility of volatility which is particularly suited
to work with high-frequency data. Our estimator is obtained
in two steps: first we compute the Fourier coefficients of the
volatility process using high-frequency observations of the log-
returns, then we iterate the procedure with a convolution of
the Fourier coefficients of the volatility process. An advantage
of our method lies in the fact that it does not resort to the
estimation of the path of the latent variance of returns, but it
needs only integrated quantities. A theoretical and numerical
study of the properties of our estimator highlights that cutting
out the highest frequencies in the Fourier expansion makes
this estimator robust to the presence of high-frequency noise
components.

In conclusion, our discussion and numerical simulations
show that the Fourier estimator of the volatility of volatility is
robust to microstructure effects and efficient in finite samples.
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Appendix 1. Proofs

Along the proofs, C will denote a constant, not necessarily the same
at the different occurrences.

Proof of Theorem 3.2. Under the model assumption (A.I)–(A.II),
it is not restrictive to assume that the volatility process v(t) is a.s.
bounded.

We split

γ̂ 2
n,N ,M −

∫ 2π

0
γ 2(t)dt

as

(2π)2

M + 1

∑
| j |≤M

(
1 − | j |

M

)
j2 [c j (vn,N )c− j (vn,N ) − c j (v)c− j (v)]

(A1)

+ (2π)2

M + 1

∑
| j |≤M

(
1 − | j |

M

)
j2 c j (v)c− j (v) −

∫ 2π

0
γ 2(t)dt.

(A2)

Consider (A1). For any | j | ≤ M

E[|c j (vn,N )c− j (vn,N ) − c j (v)c− j (v)|2]
≤ 2

(
E[| c j (vn,N )(c− j (vn,N ) − c− j (v))|2]

+ E[|c− j (v)(c j (vn,N ) − c j (v))|2]
)
.

By the definition (4), we write c j (vn,N ) − c j (v) as the sum of the
following two terms

1

2π

∫ 2π

0
e−i jφn(t)v(t)dt − 1

2π

∫ 2π

0
e−i j tv(t)dt (A3)

+ 1

2π

∫ 2π

0

∫ t

0
e−i jφn(u)DN (φn(t) − φn(u))d p(u)d p(t)

+ e−i jφn(t)DN (φn(t) − φn(u))d p(u)d p(t), (A4)
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where φn(t) = sup{tk : tk ≤ t} and DN (x) is the rescaled Dirichlet
kernel defined by DN (x) = 1

2N+1
∑

|k|≤N eikx .
Consider (A3)

E

⎡⎣∣∣∣∣∣ 1

2π

∫ 2π

0
e−i j t

(
1 − e−i j (φn(t)−t)

)
v(t)dt

∣∣∣∣∣
2
⎤⎦

≤ (ess sup ‖v‖∞)2 1

2π

∫ 2π

0
|1 − e−i j (φn(t)−t)|2dt

≤ (ess sup ‖v‖∞)2 j2ρ(n)2.

Consider (A4)

E

⎡⎣∣∣∣∣∣ 1

2π

∫ 2π

0

∫ t

0
e−i jφn(u)DN (φn(t) − φn(u))d p(u)d p(t)

∣∣∣∣∣
2
⎤⎦

≤ (ess sup ‖v‖∞)2 1

(2π)2

∫ 2π

0

∫ t

0
D2

N (φn(t) − φn(u))dudt

≤ (ess sup ‖v‖∞)2 1

2π

1

2N + 1
.

Therefore,

E
[
|c j (vn,N ) − c j (v)|2

]
≤ 2(ess sup ‖v‖∞)2

{
j2ρ(n)2 + 1

π

1

2N + 1

}
.

Finally, for any | j | ≤ M

E
[
|c− j (v)(c j (vn,N ) − c j (v))|2

]
≤ 2(ess sup ‖v‖∞)4

{
M2ρ(n)2 + 1

π

1

2N + 1

}
. (A5)

Consider now

E
[
|c j (vn,N )(c− j (vn,N ) − c− j (v))|2

]
≤ 2

(
E

[
|c− j (vn,N ) − c− j (v)|4

]
+ E

[
|c j (v)(c− j (vn,N ) − c− j (v))|2

])
. (A6)

The second addend has been estimated in (A5). For the first addend
consider the decomposition of c− j (vn,N ) − c− j (v) into (A3) and
(A4): then a similar argument using Burkholder–Davis–Gundy in-
equality for the estimation of the fourth moment gives

E
[
|c− j (vn,N ) − c− j (v)|4

]
≤ C(ess sup ‖v‖∞)4

{
j4ρ(n)4 + 1

π

1

2N + 1

}
.

Therefore, for any | j | ≤ M

E
[
|c j (vn,N )(c− j (vn,N ) − c− j (v))|2

]
≤ C(ess sup ‖v‖∞)4{M4ρ(n)4 + M2ρ(n)2 + 1

2N + 1
}.
(A7)

By (A5) and (A7), for any | j | ≤ M

E[|c j (vn,N )c− j (vn,N ) − c j (v)c− j (v)|2]
≤ C(ess sup ‖v‖∞)4

(
M2ρ(n)2 + M4ρ(n)4 + 1

2N + 1

)
.

Finally, the L2 norm of (A1) is less or equal to

C M4 (ess sup ‖v‖∞)4
(

M2ρ(n)2 + M4ρ(n)4 + 1

2N + 1

)
,

which goes to 0 under the hypothesis ρ(n)N → 0 and M4

N → 0.
Consider (A2). Using assumption (A.III), the periodic extension

of v(t) to R with period 2π (which we still denote by v(t)) satisfies

v(2π) − v(0) = 0 a.s. Therefore, applying Itô formula, we have

(2π)2

M + 1

∑
| j |≤M

(
1 − | j |

M

)
j2c j (v)c− j (v) −

∫ 2π

0
γ 2(t)dt

= 2
∫ 2π

0

∫ t

0
FM (s − t)dv(s)dv(t),

where FM (x) denotes the rescaled Fejer kernel FM (x) = 1
M+1

× ∑
| j |≤M

(
1 − | j |

M

)
ei j x .

Then, we have

E

⎡⎣(∫ 2π

0

∫ t

0
FM (s − t)dv(s)dv(t)

)2
⎤⎦

= E

[∫ 2π

0

(∫ t

0
FM (s − t)dv(s)

)2

γ 2(t)dt

]

≤ E

[∫ 2π

0
γ 4(t)dt

] 1
2

E

[∫ 2π

0

(∫ t

0
FM (s − t)dv(s)

)4

dt

] 1
2

.

Applying Burkholder–Davis–Gundy inequality, we get

E

[∫ 2π

0

(∫ t

0
FM (s − t)dv(s)

)4

dt

]

≤ C
∫ 2π

0

∫ t

0
F4

M (s − t)ds dt E

[∫ 2π

0
γ 4(s)ds

]

≤ C
1

M + 1
E

[∫ 2π

0
γ 4(s)ds

]
.

Finally, the L2 norm of (A2) is less or equal to

C
1√

M + 1
E

[∫ 2π

0
γ 4(s)ds

]
.

�
Proof of Theorem 4.2. For any fixed j , | j | ≤ M , we have

E
[
c j (̃vn,N )c− j (̃vn,N ) − c j (vn,N )c− j (vn,N )

]
= E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(εn)c j−h(d pn)
2π

2N + 1

∑
|l|≤N

cl (εn)c− j−l (d pn)

⎤⎦
(A8)

+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(εn)c j−h(d pn)
2π

2N + 1

∑
|l|≤N

cl (d pn)c− j−l (εn)

⎤⎦
(A9)

+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(εn)c j−h(d pn)
2π

2N + 1

∑
|l|≤N

cl (εn)c− j−l (εn)

⎤⎦
(A10)

+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(d pn)c j−h(εn)
2π

2N + 1

∑
|l|≤N

cl (εn)c− j−l (d pn)

⎤⎦
(A11)

+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(d pn)c j−h(εn)
2π

2N + 1

∑
|l|≤N

cl (d pn)c− j−l (εn)

⎤⎦
(A12)

+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(d pn)c j−h(εn)
2π

2N + 1

∑
|l|≤N

cl (εn)c− j−l (εn)

⎤⎦
(A13)

+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(εn)c j−h(εn)
2π

2N + 1

∑
|l|≤N

cl (εn)c− j−l (d pn)

⎤⎦
(A14)
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+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(εn)c j−h(εn)
2π

2N + 1

∑
|l|≤N

cl (d pn)c− j−l (εn)

⎤⎦
(A15)

+ E

⎡⎣ 2π

2N + 1

∑
|h|≤N

ch(εn)c j−h(εn)
2π

2N + 1

∑
|l|≤N

cl (εn)c− j−l (εn)

⎤⎦
(A16)

The terms (A8), (A9), (A11) and (A12) are similar. Consider (A8): it
is equal to

E

[
1

2π

∑
u,u′

DN (tu − tu′)e−i j tu′ εuδu′ (p)
1

2π

∑
v,v′

DN (tv − tv′)

× ei j tv′ εvδv′(p)

]
.

By using the independence between price and noise process, it can be
written as

1

2π

∑
u,u′

DN (tu − tu′)e−i j tu′ 1

2π

∑
v,v′

DN (tv − tv′)

× ei j tv′ E[εuεv]E[δu′(p)δv′(p)]. (A17)

Observe that

E
[
δu′ (p)δv′(p)

] = 0 if u′ �= v′

and

E
[
ε2

u

]
= 2E

[
η2

]
, E[εuεv] =

{
−E

[
η2

]
if |v − u| = 1

0 if |v − u| > 1.

Therefore, (A17) is equal to

(
every term is multiplied by

(
1

2π

)2
)

∑
u,u′

∑
v

DN
(
tu − tu′

)
DN

(
tv − tu′

)
E [εuεv] E

[(
δu′ (p)

)2
]

=
(∑

u,u′
D2

N
(
tu − tu′

)
E

[
ε2

u

]
+ 2

∑
u,u′

DN
(
tu − tu′

)
× DN

(
tu+1 − tu′

)
E

[
εuεu+1

] )
E

[(
δu′ (p)

)2
]

= 2E
[
η2

]∑
u,u′

(
D2

N
(
tu − tu′

) − DN
(
tu − tu′

)
× DN

(
tu+1 − tu′

) )
E

[(
δu′ (p)

)2
]
.

Using the inequality

|DN
(
tu+1 − tu′

) − DN
(
tu − tu′

) | ≤ 1 − DN

(
2π

n

)
and the following limit in probability

lim
N→∞

∫ 2π

0
du

∫ 2π

0
DN

(
u − u′) σ 2 (

u′) du′ = C
∫ 2π

0
σ 2(u)du,

we obtain for (A17) the asymptotic

2E
[
η2

]
E

[∫ 2π

0
σ 2(u)du

]
n

(
1 − DN

(
2π

n

))
.

Therefore, the sum over j in the definition of γ̃ 2
n,M,N gives a term

2E
[
η2

]
E

[∫ 2π

0
σ 2(u)du

]

(n, N , M),

where


(n, N , M) = M(M + 1)

3
n

(
1 − DN

(
2π

n

))
,

which is O
(

M2 N 2

n

)
.

Now compute (A10). Note that the terms (A13)–(A15) are similar.
For the independence between noise and price, it is equal to(

2π

2N + 1

)2 ∑
|h|≤N

∑
|l|≤N

E
[
ch(εn)cl (εn)c− j−l (εn)

]
× E[c j−h(d pn)] = 0,

as E[c j−h(d pn)] = 0 for any j, h and n.
It remains to calculate (A16), which is equal to

1

(2π)2

∑
v,v′

∑
u,u′

e−i j (tv′−tu′ )DN (tv − tv′)DN (tu − tu′)E[εvεv′εuεu′ ].

(A18)
We need the fourth moments for the noise process:

E
[
ε4

]
= 2E

[
η4

]
+ 6E

[
η2

]2
(A19)

E
[
ε3

uεv

]
=

⎧⎨⎩−E
[
η4

]
− 3E

[
η2

]2
if |u − v| = 1

0 if |u − v| > 1

E
[
ε2

uε2
v

]
=

⎧⎪⎨⎪⎩E
[
η4

]
+ 3E

[
η2

]2
if |u − v| = 1

4E
[
η2

]2
if |u − v| > 1

E
[
ε2

uεvεv+1

]
= −2E

[
η2

]2
if v ≥ u + 1 or v ≤ u − 2

E
[
εuε2

u+1εu+2

]
= 2E

[
η2

]2

E
[
εuεu+1εvεv+1

] = E
[
η2

]2
if |u − v| ≥ 2.

In order to compute (A18), we proceed as follows (each term has to
be multiplied by 1/(2π)2):

(I) firstly, we add the terms with coefficient E[η4] + 3E[η2]2∑
u

E
[
ε4

u

]
+ 8

∑
u

cos( j (tu+1 − tu))DN (tu − tu+1)E
[
ε3

uεu+1

]
+ 6

∑
u

cos( j (tu+1 − tu))E
[
ε2

uε2
u+1

]
= 2

(
E

[
η4

]
+ 3E

[
η2

]2
)

n

[(
1 − cos

(
j

2π

n

))
+4 cos

(
j

2π

n

)(
1 − DN

(
2π

n

))]
.

Therefore, the sum over j in the definition of γ̃ 2
n,M,N gives

2

(
E

[
η4

]
+ 3E

[
η2

]2
)

1

M + 1

∑
| j |≤M

(
1 − | j |

M

)
j2 n

×
[(

1 − cos

(
j

2π

n

))
+ 4 cos

(
j

2π

n

)(
1 − DN

(
2π

n

))]
= 2

(
E

[
η4

]
+ 3E

[
η2

]2
)

�(n, N , M),

where �(n, N , M) = O
(

M4

n

)
+ O

(
M2 N 2

n

)
(we used: cos x =

1 − x2

2 + O(x4)).

(II) Secondly, we add the terms with coefficient 2E
[
η2

]2
and only

one summation. We omit to consider a constant factor c = 30 which
multiply each addend, then we have:
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∑
u

cos( j (tu+2 − tu))DN (tu+2 − tu+1)E
[
ε2

uεu+1εu+2

]
+

∑
u

cos( j (tu+2 − tu+1))DN (tu+2 − tu+1)DN (tu − tu+1)

× E
[
εuε2

u+1εu+2

]
+

∑
u

cos( j (tu+2 − tu+1))DN (tu − tu+1)E
[
εuεu+1ε

2
u+2

]
+ 2

∑
u

cos( j (tu+3 − tu+1))DN (tu+3 − tu+2)DN (tu − tu+1)

× E [εuεu+1εu+2εu+3]

= 2E
[
η2

]2
n

{
− cos

(
j

4π

n

)
DN

(
2π

n

)(
1 − DN

(
2π

n

))
− cos

(
j

2π

n

)
DN

(
2π

n

)(
1 − DN

(
2π

n

))}
= 2E

[
η2

]2
DN

(
2π

n

)(
1 − DN

(
2π

n

))
n

×
{

−2

(
1 − 10

(
j
π

n

)2 + O

(
j

n

)4
)}

.

Finally, consider the sum over j

2E
[
η2

]2
n

(
1 − DN

(
2π

n

))
1

M + 1

×
∑

| j |≤M

(
1 − | j |

M

)
j2

(
1 − 10

(
j
π

n

)2 + O

(
j

n

)4
)

= 2E
[
η2

]2
�1(n, N , M),

where �1(n, N , M) = O
(

N 2 M2

n

)
.

(III) Thirdly, we add the terms with coefficient 2E[η2]2 and a
double summation. We omit to write a constant c = 6 which multiplies
each term, then we have

∑
u,v

cos( j (tv − tu))E
[
ε2

uε2
v

]
+ 2

(
2
∑
u,v

cos( j (tv+1 − tu))DN (tv+1 − tv)E
[
ε2

uεvεv+1

])
+ 4

∑
u,v

cos( j (tv+1 − tu+1))DN (tu − tu+1)DM (tv − tv+1)

× E
[
εuεu+1εvεv+1

]
=

∑
u,v

cos( j (tv − tu))4E
[
η2

]2

+ 4
∑
u,v

cos( j (tv+1 − tu))DN

(
2π

n

)(
−2E

[
η2

]2
)

+ 4
∑
u,v

cos( j (tv+1 − tu+1))D2
N

(
2π

n

)
E

[
η2

]2

= 4E
[
η2

]2 ∑
u,v

{
cos( j (tv − tu)) − 2 cos( j (tv+1 − tu))

× DN

(
2π

n

)
+ cos( j (tv+1 − tu+1))D2

N

(
2π

n

)}
= 4E

[
η2

]2
(

1 − DN

(
2π

n

))2
O

(
n2

)
.

Then, considering the sum over j , we get a term

2E
[
η2

]2
�2(n, N , M),

where �2(n, N , M) = O
(

M2 N 4

n2

)
. Finally, denote � := �1 +

�2. �
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